Improving FIR Filter Coefficient Precision

Speaker: Richard Lyons

Besser Associates E-mail: R.Lyons@ieee.com

Improving FIR Filter Coefficient Precision

- There is a method for increasing the precision of fixed-point coefficients used in linear-phase finite impulse response (FIR) filters,
 - to achieve improved filter performance,
 - without increasing either the number of coefficients or coefficient bitwidths.
- Thinking about this, such a process does not seem possible.
- But to see how, let's first review the behavior of a FIR filter.

- Consider an FIR filter's coefficients (impulse response) shown in Figure 1(a).
- Such a filter can be implemented as shown in Figure 1(b).

- Quantizing those coefficients in, an 8-bit two's complement format,
 - yields the decimal integer and binary values in Figure 2(b).
- The beginning, and ending, coefficients are small in amplitude.
- Many high-order bits of the low-amplitude coefficients, the red-font underscored bits, are the same as the sign bit.
 - That's because of the fixed bitwidth quantization.

- Those underscored bits are "wasted" bits.
 - They have no effect (no weight) on the calculation of filter output y(n).

		sign bit		
			Ļ	
b_0	0.01751	2	0 <u>00000</u> 10	
b_1	-0.05899	-8	1 <u>1111</u> 000	
b_2	-0.26156	-33	1 <u>1</u> 011111	
$\bar{b_3}$	0.37687	48	0 <u>0</u> 110000	
b_4	0.87968	113	01110001	
b_5	0.37687	48	0 <u>0</u> 110000	
b_6	-0.26156	-33	1 <u>1</u> 011111	
b_7	-0.05899	-8	1 <u>1111</u> 000	
b_8	0.01751	2	0 <u>00000</u> 10	

- So the idea here is to replace those "wasted" bits with more significant bits,
 - to give us improved numerical precision for the low-amplitude beginning and ending coefficients.
- OK, let's look at an example,
 - of what's called a "serial" implementation of this whole idea.

"Serial" Method

- Assume we quantize the maximum-amplitude coefficient, b_4 , to eight bits.
- Next, we quantize the lower-amplitude coefficients to larger bitwidths than the max-amplitude coefficient b_4 .

• We'll discuss how to choose the coefficients' variable bitwidths in a moment.

- Next we delete the appropriate "wasted" (red-underscored) bits,
 - to arrive at our final 8-bit coefficients.

- Appended to each coefficient is a flag bit,
 - indicating whether that coefficient used one more quantization bit than the previous (next larger) coefficient.
- The question now is, "How do we use those "oddball" coefficients in a filter?"

- Figure 5 shows us the answer.
- This implementation is called "serial" because there is only one multiplier.

"Serial" filter implementation

- For an *N*-tap FIR filter,
 - for odd N, (N+1)/2 coefficients are stored in the coefficient ROM (read-only memory).
 - for even N, N/2 coefficients are stored in the coefficient ROM.

- When a new *x*(*n*) input sample arrives, we:
 - Set the accumulator to zero.
 - Multiply the sum of the appropriate data registers by the b_4 coefficient.
 - Add that product to the accumulator.
 - Next we multiply the sum of the appropriate data registers by the b_3 coefficient.
 - -- If the flag bit of the b₃ coefficient is one, we left-shift the current accumulator value and add the current multiplier's output to the shifted accumulator value.
 - -- If the current coefficient's flag bit is zero the accumulator word is not shifted prior to an accumulation.
 - Continue these multiplications, possible left shifts, and accumulations for the remaining b_2 , b_1 , and b_0 coefficients.

- So, when a new x(n) input sample arrives, we perform a series of multiplications and accumulations (using multiple clock cycles),
 - always starting with the largest coefficient (b_4) ,
 - to produce a single y(n) filter output sample.
- To maintain our original FIR filter's gain,
 - after the final accumulation we truncate the final accumulator value by discarding its least significant *M* bits,
 - where *M* is the total number of flag bits in the ROM memory.
- Let's look at this "serial" method in action.

"Serial" Example

- Implement a 29-tap lowpass FIR filter,
 - whose cutoff frequency is $0.167 f_s$ and whose stopband begins at $0.292 f_s$.

- Relative to a traditional fixed-point implementation (dotted curve), the "serial method" (dashed curve) provides:
 - Improved stopband attenuation,
 - Reduced transition region width,
 - Improved passband ripple performance.

- All of these improvements occur:
 - without increasing the bitwidths of our filter's coefficients
 - without increasing the number of coefficients. (

- Regarding this "serial method", American actor Robert De Niro would say:
 - I like it.
 - I like it.
 - What did I tell you?
 - WHAT DID I TELL YOU?
 - I like it!

• As it turns out, we can do even better than the "serial method".

"Parallel" Method

- In the serial method, adjacent filter coefficients were quantized to a precision differing by no more that one bit.
 - That's because we used "flag bits".
- In the parallel method, adjacent coefficients can be quantized to a precision differing by more than one bit.
- Figure 7 shows an example of our parallel method's coefficient quantization process.

- Again, assume we quantize the maximum-amplitude coefficient, b_4 , to eight bits.
- Next, we quantize the lower-amplitude coefficients to larger bitwidths than the max-amplitude coefficient b_4 .

- Notice that b_2 is quantized to 9 bits, and
 - b_1 is quantized to 12 bits.
- We'll discuss how to choose the coefficients' variable bitwidths in a moment.

• As before, we then delete the appropriate "wasted" (red-underscored) bits, - to arrive at our final 8-bit coefficients.

• Figure 9 shows the implementation of the "parallel" method.

- This implementation is called "parallel" because there are multiple multipliers.
- To keep our drawings simple, assume we're building a 5-tap filter.
 - **b**₂ is the maximum-amplitude coefficient.

- When a new *x*(*n*) input sample arrives, we:
 - Set the accumulator to zero.
 - Multiply the sums of the appropriate data registers by the corresponding coefficients.
 - -- All multiplications occur in one clock cycle (i.e., in parallel).

• The multiple products are added to the accumulator as shown in Figure 10.

- For example, if there were four wasted bits deleted from the high-precision b_1 coefficient,
 - -- then the V_k product is shifted to the right by four bits, relative to the W_k product bits, before being added to the accumulator word.
- If there were seven wasted bits deleted from the high-precision b_0 coefficient,
 - -- then the U_k product is shifted to the right by seven bits, relative to the W_k product bits, before being added to the accumulator word.
- It's the data routing that accounts for the deleted "wasted" bits in Figure 8!
- Let's look at this "parallel" method in action.

"Parallel" Example

• Implementing the same 29-tap lowpass filter as in the "serial" method example yields the performance curves in Figure 11.

- Relative to the "serial method" (dashed curve) implementation, the "parallel" method (solid curve) provides:
 - even further-improved stopband attenuation.
 - Again, <u>without increasing either the bitwidths of our filter's coefficients, or the</u> <u>number of coefficients.</u>
- Siskel and Ebert would give this parallel method "Two Thumbs Up."

Choosing the Number of Bits in Variable Bitwidth Coefficients

- There are algorithms for determining the number of bits in the variable bitwidth coefficients.
 - One algorithm for the "serial" method coeffs. in Figure 3,
 - and another algorithm for the "parallel" method coeffs. in Figure 7.
- Those algorithms are a bit too intricate (too grueling) to cover in a Conference presentation such as this.
- Those algorithms will be published in the "DSP Tips & Tricks" column,
 - in the July 2010 issue of the IEEE Signal Processing Magazine.
- If you want to learn those algorithms before July, send me an E-mail,
 - at: <R.Lyons@ieee.org>.

- Please be aware that the Copyrights to the figures in this presentation are, this month, being transferred to the IEEE.
- This entire filter coefficient-enhancement idea is not mine.
- This is the idea of Zhi Shen.
 - Ph.D degree student with the Department of Electronics and Information Engineering, Huazhong Univ.Sci. & Tech., Wuhan, P.R. China.

- As far as I know, Mr. Shen has implemented these improved-precision coefficient methods,
 - on an Altera FPGA.

