
2010 COMP.DSP Conference, Kansas City, Kansas

Improving FIR Filter
Coefficient Precision

 Speaker: Richard Lyons
 Besser Associates
 E-mail: R.Lyons@ieee.com

k

bk

0 2 4 6 8
–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

Copyright IEEE, Pending, All Rights Reserved 1

2010 COMP.DSP Conference, Kansas City, Kansas

Improving FIR Filter Coefficient Precision

● There is a method for increasing the precision of fixed-point coefficients used in

linear-phase finite impulse response (FIR) filters,

- to achieve improved filter performance,

- without increasing either the number of coefficients or coefficient bitwidths.

● Thinking about this, such a process does not seem possible.

● But to see how, let's first review the behavior of a FIR filter.

Copyright IEEE, Pending, All Rights Reserved 2

2010 COMP.DSP Conference, Kansas City, Kansas

● Consider an FIR filter's coefficients (impulse response) shown in Figure 1(a).

● Such a filter can be implemented as shown in Figure 1(b).

k

bk

(a)

x(n)

b0 = b8 b4

z–1

z–1 z–1

b1 = b7

y(n)

x(n–1)

x(n–7)x(n–8) z–1 x(n–4)

x(n–2)

z–1

z–1

x(n–6)

b2 = b6

x(n–3)

z–1

z–1

x(n–5)

b3 = b5

(b)
Accumulator

0 2 4 6 8
–0.4
–0.2

0
0.2
0.4
0.6
0.8
1.0

Folded
delay
line

Figure 1

Copyright IEEE, Pending, All Rights Reserved 3

2010 COMP.DSP Conference, Kansas City, Kansas

● Quantizing those coefficients in, an 8-bit two's complement format,

- yields the decimal integer and binary values in Figure 2(b).

● The beginning, and ending, coefficients are small in amplitude.

● Many high-order bits of the low-amplitude coefficients, the red-font underscored
bits, are the same as the sign bit.

- That's because of the fixed bitwidth quantization.

Floating-point
coefficients sign bit

b0 0.01751 2 00000010
b1 –0.05899 –8 1

1.0
1111000

b2 –0.26156 –33 11011111
b3 0.37687 48 00110000
b4 0.87968 113 01110001
b5 0.37687 48 00110000
b6 –0.26156 –33 11011111
b7 –0.05899 –8 11111000
b8 0.01751 2 00000010

(b)
k

bk

(a)
0 2 4 6 8

–0.4
–0.2

0
0.2
0.4
0.6
0.8

Figure 2

Copyright IEEE, Pending, All Rights Reserved 4

2010 COMP.DSP Conference, Kansas City, Kansas

● Those underscored bits are "wasted" bits.

- They have no effect (no weight) on the calculation of filter output y(n).

b0 0.01751 2 00000010
b1 –0.05899 –8 11111000
b2 –0.26156 –33 11011111
b3 0.37687 48 00110000
b4 0.87968 113 01110001
b5 0.37687 48 00110000
b6 –0.26156 –33 11011111
b7 –0.05899 –8 11111000
b8 0.01751 2 00000010

sign bit

● So the idea here is to replace those "wasted" bits with more significant bits,

- to give us improved numerical precision for the low-amplitude
beginning and ending coefficients.

● OK, let's look at an example,

- of what's called a "serial" implementation of this whole idea.

Copyright IEEE, Pending, All Rights Reserved 5

2010 COMP.DSP Conference, Kansas City, Kansas

"Serial" Method

● Assume we quantize the maximum-amplitude coefficient, b4, to eight bits.

● Next, we quantize the lower-amplitude coefficients to larger bitwidths than the
max-amplitude coefficient b4.

Quantize
to

various
bitwidths

8-bit quantization

b0 0.01751 (2)
b1 –0.05899 (–8)
b2 –0.26156 (–33)
b3 0.37687 (48)
b4 0.87968 (113)
b5 0.37687 (48)
b6 –0.26156 (–33)
b7 –0.05899 (–8)
b8 0.01751 (2)

00000010.010 11-bit (2.25)
11111000.10 10-bit (–7.5)
11011110.1 9-bit (–33.5)
00110000.0 9-bit (48)
01110001. 8-bit (113)
00110000.0 9-bit (48)
11011110.1 9-bit (–33.5)
11111000.10 10-bit (–7.5)
00000010.010 11-bit (2.25)

Implied binary point

Figure 3

● We'll discuss how to choose the coefficients' variable bitwidths in a moment.

Copyright IEEE, Pending, All Rights Reserved 6

2010 COMP.DSP Conference, Kansas City, Kansas

● Next we delete the appropriate "wasted" (red-underscored) bits,

- to arrive at our final 8-bit coefficients.

Delete wasted
(underscored)

bits

Final

00000010010
1111100010
110111101
001100000
01110001
001100000
110111101
1111100010
00000010010

00010010 (18) Flag = 1
11100010 (–30) Flag = 1
10111101 (–67) Flag = 0
01100000 (96) Flag = 1
01110001 (113) Flag = 0
01100000 (96) Flag = 1
10111101 (–67) Flag = 0
11100010 (–30) Flag = 1
00010010 (18) Flag = 1

coefficients

Figure 4

● Appended to each coefficient is a flag bit,

- indicating whether that coefficient used one more quantization bit than the
previous (next larger) coefficient.

● The question now is, "How do we use those "oddball" coefficients in a filter?"
?

Copyright IEEE, Pending, All Rights Reserved 7

2010 COMP.DSP Conference, Kansas City, Kansas

● Figure 5 shows us the answer.

● This implementation is called "serial" because there is only one multiplier.

Mux

Coefficients
ROM

Data
registers

Mux
Left shift
one bit

Accumulator

Mux

...

x(n)

y(n)8

...

M bits

Truncate
least

significant
(b4, b3, b2, b1, b0)

Flag1

Data
registers

Folded delay line

"Serial" filter implementation

Figure 5

● For an N-tap FIR filter,

- for odd N, (N+1)/2 coefficients are stored in the coefficient ROM (read-only
memory).

- for even N, N/2 coefficients are stored in the coefficient ROM.

Copyright IEEE, Pending, All Rights Reserved 8

2010 COMP.DSP Conference, Kansas City, Kansas

● When a new x(n) input sample arrives, we:

- Set the accumulator to zero.

- Multiply the sum of the appropriate data registers by the b4 coefficient.

- Add that product to the accumulator.

- Next we multiply the sum of the appropriate data registers by the b3 coefficient.

-- If the flag bit of the b3 coefficient is one, we left-shift the current accumulator
value and add the current multiplier's output to the shifted accumulator
value.

-- If the current coefficient's flag bit is zero the accumulator word is not shifted
prior to an accumulation.

- Continue these multiplications, possible left shifts, and accumulations for the
remaining b2, b1, and b0 coefficients.

Copyright IEEE, Pending, All Rights Reserved 9

2010 COMP.DSP Conference, Kansas City, Kansas

● So, when a new x(n) input sample arrives, we perform a series of multiplications
and accumulations (using multiple clock cycles),

- always starting with the largest coefficient (b4),

- to produce a single y(n) filter output sample.

● To maintain our original FIR filter's gain,

- after the final accumulation we truncate the final accumulator value by discarding
its least significant M bits,

- where M is the total number of flag bits in the ROM memory.

● Let's look at this "serial" method in action.

Copyright IEEE, Pending, All Rights Reserved 10

2010 COMP.DSP Conference, Kansas City, Kansas

"Serial" Example

● Implement a 29-tap lowpass FIR filter,

- whose cutoff frequency is 0.167fs and whose stopband begins at 0.292fs.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-80

-60

-40

-20

0
9-bit traditional fixed-point

Floating-point

Freq x fs

dB

9-bit serial method

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

-0.3

-0.2

-0.1

0

Freq x fs

dB

(a)

(b) 9-bit traditional fixed-point
9-bit serial method

Figure 6

Copyright IEEE, Pending, All Rights Reserved 11

2010 COMP.DSP Conference, Kansas City, Kansas

● Relative to a traditional fixed-point implementation (dotted curve), the "serial
method" (dashed curve) provides:

- Improved stopband attenuation,

- Reduced transition region width,

- Improved passband ripple performance.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-80

-60

-40

-20

0
9-bit traditional fixed-point

Floating-point

Freq x fs

dB

9-bit serial method

● All of these improvements occur:

- without increasing the bitwidths of our filter's coefficients
- without increasing the number of coefficients.

Copyright IEEE, Pending, All Rights Reserved 12

2010 COMP.DSP Conference, Kansas City, Kansas

● Regarding this "serial method", American actor Robert De Niro would say:

- I like it.
- I like it.
- What did I tell you?
- WHAT DID I TELL YOU?
- I like it!

● As it turns out, we can do even better than the "serial method".

Copyright IEEE, Pending, All Rights Reserved 13

2010 COMP.DSP Conference, Kansas City, Kansas

"Parallel" Method

● In the serial method, adjacent filter coefficients were quantized to a precision
differing by no more that one bit.

- That's because we used "flag bits".

● In the parallel method, adjacent coefficients can be quantized to a precision
differing by more than one bit.

● Figure 7 shows an example of our parallel method's coefficient quantization
process.

Copyright IEEE, Pending, All Rights Reserved 14

2010 COMP.DSP Conference, Kansas City, Kansas

● Again, assume we quantize the maximum-amplitude coefficient, b4, to eight bits.

● Next, we quantize the lower-amplitude coefficients to larger bitwidths than the
max-amplitude coefficient b4.

Quantize
to

various
bitwidths

8-bit quantization

b0 0.01751 (2)
b1 –0.05899 (–8)
b2 –0.26156 (–33)
b3 0.37687 (48)
b4 0.87968 (113)
b5 0.37687 (48)
b6 –0.26156 (–33)
b7 –0.05899 (–8)
b8 0.01751 (2)

00000010.01000 13-bit (2.25)
11111000.0111 12-bit (–7.5625)
11011110.1 9-bit (–33.5)
00110000.0 9-bit (48)
01110001. 8-bit (113)
00110000.0 9-bit (48)
11011110.1 9-bit (–33.5)
11111000.0111 12-bit (–7.5625)
00000010.01000 13-bit (2.25)

Implied binary point

Figure 7

● Notice that b2 is quantized to 9 bits, and

- b1 is quantized to 12 bits.

● We'll discuss how to choose the coefficients' variable bitwidths in a moment.

Copyright IEEE, Pending, All Rights Reserved 15

2010 COMP.DSP Conference, Kansas City, Kansas

● As before, we then delete the appropriate "wasted" (red-underscored) bits,
- to arrive at our final 8-bit coefficients.

Delete wasted
(underscored)

bits

0000001001000
111110000111
110111101
001100000
01110001
001100000
110111101
111110000111
0000001001000

01001000 (72)
10000111 (–121)
10111101 (–67)
01100000 (96)
01110001 (113)
01100000 (96)
10111101 (–67)
10000111 (–121)
01001000 (72)

Final
coefficients

Figure 8

● Figure 9 shows the implementation of the "parallel" method.

Copyright IEEE, Pending, All Rights Reserved 16

2010 COMP.DSP Conference, Kansas City, Kansas

● This implementation is called "parallel" because there are multiple multipliers.

● To keep our drawings simple, assume we're building a 5-tap filter.

- b2 is the maximum-amplitude coefficient.

x(n)

z–1

z–1

z–1

z–1x(n–1)

x(n–2)x(n–3)x(n–4)

b2b0 = b4 b1 = b3

y(n)Accumulator
Uk Vk Wk

"Parallel" filter
implementation

Figure 9

● When a new x(n) input sample arrives, we:

- Set the accumulator to zero.

- Multiply the sums of the appropriate data registers by the corresponding
coefficients.

-- All multiplications occur in one clock cycle (i.e., in parallel).

Copyright IEEE, Pending, All Rights Reserved 17

2010 COMP.DSP Conference, Kansas City, Kansas

● The multiple products are added to the accumulator as shown in Figure 10.

V0V1V2

W0W1W2 U0U1U2

"Parallel" method Accumulator

.

. . .

25 24 23 22 21 20 2–1 2–2 2–3 2–4 2–5 2–6 2–7

Figure 10

- For example, if there were four wasted bits deleted from the high-precision b1
coefficient,

-- then the Vk product is shifted to the right by four bits, relative to the Wk
product bits, before being added to the accumulator word.

- If there were seven wasted bits deleted from the high-precision b0 coefficient,

-- then the Uk product is shifted to the right by seven bits, relative to the Wk
product bits, before being added to the accumulator word.

● It's the data routing that accounts for the deleted "wasted" bits in Figure 8!

● Let's look at this "parallel" method in action.

Copyright IEEE, Pending, All Rights Reserved 18

2010 COMP.DSP Conference, Kansas City, Kansas

"Parallel" Example

● Implementing the same 29-tap lowpass filter as in the "serial" method example
yields the performance curves in Figure 11.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-80

-60

-40

-20

0

9-bit serial method
9-bit parallel method

Freq x fs

dB

9-bit traditional fixed-point

Figure 11

● Relative to the "serial method" (dashed curve) implementation, the "parallel"
method (solid curve) provides:

- even further-improved stopband attenuation.

- Again, without increasing either the bitwidths of our filter's coefficients, or the
number of coefficients.

● Siskel and Ebert would give this parallel method "Two Thumbs Up."

Copyright IEEE, Pending, All Rights Reserved 19

2010 COMP.DSP Conference, Kansas City, Kansas

Choosing the Number of Bits in Variable Bitwidth Coefficients

● There are algorithms for determining the number of bits in the variable bitwidth
coefficients.

- One algorithm for the "serial" method coeffs. in Figure 3,

- and another algorithm for the "parallel" method coeffs. in Figure 7.

● Those algorithms are a bit too intricate (too grueling) to cover in a Conference
presentation such as this.

● Those algorithms will be published in the "DSP Tips & Tricks" column,

- in the July 2010 issue of the IEEE Signal Processing Magazine.

● If you want to learn those algorithms before July, send me an E-mail,

- at: <R.Lyons@ieee.org>.

Copyright IEEE, Pending, All Rights Reserved 20

2010 COMP.DSP Conference, Kansas City, Kansas

Copyright IEEE, Pending, All Rights Reserved 21

● Please be aware that the Copyrights to the figures in this presentation are, this
month, being transferred to the IEEE.

● This entire filter coefficient-enhancement idea is not mine.

● This is the idea of Zhi Shen.
- Ph.D degree student with the Department of Electronics and Information

Engineering, Huazhong Univ.Sci. & Tech., Wuhan, P.R. China.

● As far as I know, Mr. Shen has implemented these improved-precision coefficient

methods,

- on an Altera FPGA.

	Improving FIR Filter Coefficient Precision

