Improving FIR Filter Coefficient Precision

Speaker: Richard Lyons
Besser Associates
E-mail: R.Lyons@ieee.com

Improving FIR Filter Coefficient Precision

- There is a method for increasing the precision of fixed-point coefficients used in linear-phase finite impulse response (FIR) filters,
- to achieve improved filter performance,
- without increasing either the number of coefficients or coefficient bitwidths.
- Thinking about this, such a process does not seem possible.
- But to see how, let's first review the behavior of a FIR filter.
- Consider an FIR filter's coefficients (impulse response) shown in Figure 1(a).
- Such a filter can be implemented as shown in Figure 1(b).

Figure 1

- Quantizing those coefficients in, an 8-bit two's complement format,
- yields the decimal integer and binary values in Figure 2(b).
- The beginning, and ending, coefficients are small in amplitude.
- Many high-order bits of the low-amplitude coefficients, the red-font underscored bits, are the same as the sign bit.
- That's because of the fixed bitwidth quantization.

(a)

Floating-point coefficients

b_{0}	0.01751	2	00000010
b_{1}	-0.05899	-8	$1 \underline{1111000}$
b_{2}	-0.26156	-33	$1 \underline{1011111}$
b_{3}	0.37687	48	$0 \underline{0} 110000$
b_{4}	0.87968	113	01110001
b_{5}	0.37687	48	$0 \underline{0} 110000$
b_{6}	-0.26156	-33	$1 \underline{1011111}$
b_{7}	-0.05899	-8	$1 \underline{1111000}$
b_{8}	0.01751	2	$\underline{000000} 10$

(b)

Figure 2

- Those underscored bits are "wasted" bits.
- They have no effect (no weight) on the calculation of filter output $y(n)$.

		sign bit	
b_{0}	0.01751	2	00000010
b_{1}	-0.05899	-8	11111000
b_{2}	-0.26156	-33	11011111
b_{3}	0.37687	48	00110000
b_{4}	0.87968	113	01110001
b_{5}	0.37687	48	00110000
b_{6}	-0.26156	-33	11011111
b_{7}	-0.05899	-8	11111000
b_{8}	0.01751	2	00000010

- So the idea here is to replace those "wasted" bits with more significant bits,
- to give us improved numerical precision for the low-amplitude beginning and ending coefficients.
- OK, let's look at an example,
- of what's called a "serial" implementation of this whole idea.

"Serial" Method

- Assume we quantize the maximum-amplitude coefficient, \boldsymbol{b}_{4}, to eight bits.
- Next, we quantize the lower-amplitude coefficients to larger bitwidths than the max-amplitude coefficient $\boldsymbol{b}_{\mathbf{4}}$.

8-bit quantization				Implied binary point		
b_{0}	0.01751	(2)		00000010.010	11-bit	(2.25)
b_{1}	-0.05899	(-8)		11111000.10	10-bit	(-7.5)
b_{2}	-0.26156	(-33)		11011110.1	9-bit	(-33.5)
b_{3}	0.37687	(48)		00110000.0	9-bit	(48)
b_{4}	0.87968	(113)		01110001.	8-bit	(113)
b_{5}	0.37687	(48)	bitwidths	00110000.0	9-bit	(48)
b_{6}	-0.26156	(-33)	bitwidths	11011110.1	9-bit	(-33.5)
b_{7}	-0.05899	(-8)		11111000.10	10-bit	(-7.5)
b_{8}	0.01751	(2)		00000010.010	11-bit	(2.25)

Figure 3

- We'll discuss how to choose the coefficients' variable bitwidths in a moment.
- Next we delete the appropriate "wasted" (red-underscored) bits,
- to arrive at our final 8-bit coefficients.

		Final coefficients		
000000010010		00010010	(18)	Flag $=1$
1111100010		11100010	(-30)	Flag $=1$
110111101		10111101	(-67)	Flag $=0$
$0 \underline{01100000}$		01100000	(96)	Flag $=1$
01110001	(underscored)	- 01110001	(113)	Flag $=0$
001100000	bits	01100000	(96)	Flag $=1$
110111101		10111101	(-67)	Flag $=0$
1111100010		11100010	(-30)	Flag $=1$
$0 \underline{0000010010}$		00010010	(18)	Flag $=1$

Figure 4

- Appended to each coefficient is a flag bit,
- indicating whether that coefficient used one more quantization bit than the previous (next larger) coefficient.
- The question now is, "How do we use those "oddball" coefficients in a filter?"
- Figure 5 shows us the answer.
- This implementation is called "serial" because there is only one multiplier.
"Serial" filter implementation

Figure 5

- For an N-tap FIR filter,
- for odd $N,(N+1) / 2$ coefficients are stored in the coefficient ROM (read-only memory).
- for even $N, N / 2$ coefficients are stored in the coefficient ROM.
- When a new $x(n)$ input sample arrives, we:
- Set the accumulator to zero.
- Multiply the sum of the appropriate data registers by the \boldsymbol{b}_{4} coefficient.
- Add that product to the accumulator.
- Next we multiply the sum of the appropriate data registers by the b_{3} coefficient.
-- If the flag bit of the $\boldsymbol{b}_{\mathbf{3}}$ coefficient is one, we left-shift the current accumulator value and add the current multiplier's output to the shifted accumulator value.
-- If the current coefficient's flag bit is zero the accumulator word is not shifted prior to an accumulation.
- Continue these multiplications, possible left shifts, and accumulations for the remaining b_{2}, b_{1}, and b_{0} coefficients.
- So, when a new $x(n)$ input sample arrives, we perform a series of multiplications and accumulations (using multiple clock cycles),
- always starting with the largest coefficient $\left(b_{4}\right)$,
- to produce a single $y(n)$ filter output sample.
- To maintain our original FIR filter's gain,
- after the final accumulation we truncate the final accumulator value by discarding its least significant M bits,
- where M is the total number of flag bits in the ROM memory.
- Let's look at this "serial" method in action.

"Serial" Example

- Implement a 29-tap lowpass FIR filter,
- whose cutoff frequency is $0.167 f_{s}$ and whose stopband begins at $0.292 f_{s}$.
(a)

(b)

Figure 6
- Relative to a traditional fixed-point implementation (dotted curve), the "serial method" (dashed curve) provides:
- Improved stopband attenuation,
- Reduced transition region width,
- Improved passband ripple performance.

- All of these improvements occur:
- without increasing the bitwidths of our filter's coefficients
- without increasing the number of coefficients.
- Regarding this "serial method", American actor Robert De Niro would say:
- I like it.
- I like it.
- What did I tell you?
- WHAT DID I TELL YOU?
- I like it!

- As it turns out, we can do even better than the "serial method".

"Parallel" Method

- In the serial method, adjacent filter coefficients were quantized to a precision differing by no more that one bit.
- That's because we used "flag bits".
- In the parallel method, adjacent coefficients can be quantized to a precision differing by more than one bit.
- Figure 7 shows an example of our parallel method's coefficient quantization process.
- Again, assume we quantize the maximum-amplitude coefficient, b_{4}, to eight bits.
- Next, we quantize the lower-amplitude coefficients to larger bitwidths than the max-amplitude coefficient $\boldsymbol{b}_{\mathbf{4}}$.

8-bit quantization				Implied binary point		
b_{0}	0.01751	(2)		00000010.01000	13-bit	(2.25)
b_{1}	-0.05899	(-8)		11111000.0111	12-bit	(-7.5625)
b_{2}	-0.26156	(-33)		11011110.1	9-bit	(-33.5)
b_{3}	0.37687	(48)		00110000.0	9-bit	(48)
b_{4}	0.87968	(113)	various	01110001.	8-bit	(113)
b_{5}	0.37687	(48)	batwidths	00110000.0	9-bit	(48)
b_{6}	-0.26156	(-33)	bitwidths	11011110.1	9-bit	(-33.5)
b_{7}	-0.05899	(-8)		11111000.0111	12-bit	(-7.5625)
b_{8}	0.01751	(2)		00000010.01000	13-bit	(2.25)

Figure 7

- Notice that b_{2} is quantized to 9 bits, and
- b_{1} is quantized to $\mathbf{1 2}$ bits.
- We'll discuss how to choose the coefficients' variable bitwidths in a moment.
- As before, we then delete the appropriate "wasted" (red-underscored) bits, - to arrive at our final 8 -bit coefficients.

		Final coefficients	
0000001001000		01001000	(72)
111110000111		10000111	(-121)
110111101		10111101	(-67)
0 O 1100000	Delete wasted	01100000	(96)
01110001	(underscored)	> 01110001	(113)
001100000	bits	01100000	(96)
110111101		10111101	(-67)
111110000111		10000111	(-121)
$0 \underline{000001001000}$		01001000	(72)

Figure 8

- Figure 9 shows the implementation of the "parallel" method.
- This implementation is called "parallel" because there are multiple multipliers.
- To keep our drawings simple, assume we're building a 5-tap filter.
- b_{2} is the maximum-amplitude coefficient.

Figure 9

- When a new $x(n)$ input sample arrives, we:
- Set the accumulator to zero.
- Multiply the sums of the appropriate data registers by the corresponding coefficients.
-- All multiplications occur in one clock cycle (i.e., in parallel).
- The multiple products are added to the accumulator as shown in Figure 10.

Figure 10

- For example, if there were four wasted bits deleted from the high-precision b_{1} coefficient,
-- then the V_{k} product is shifted to the right by four bits, relative to the \boldsymbol{W}_{k} product bits, before being added to the accumulator word.
- If there were seven wasted bits deleted from the high-precision \boldsymbol{b}_{0} coefficient,
-- then the \boldsymbol{U}_{k} product is shifted to the right by seven bits, relative to the \boldsymbol{W}_{k} product bits, before being added to the accumulator word.
- It's the data routing that accounts for the deleted "wasted" bits in Figure 8!
- Let's look at this "parallel" method in action.

"Parallel" Example

- Implementing the same 29-tap lowpass filter as in the "serial" method example yields the performance curves in Figure 11.

Figure 11

- Relative to the "serial method" (dashed curve) implementation, the "parallel" method (solid curve) provides:
- even further-improved stopband attenuation.
- Again, without increasing either the bitwidths of our filter's coefficients, or the number of coefficients.

- Siskel and Ebert would give this parallel method "Two Thumbs Up."

Choosing the Number of Bits in Variable Bitwidth Coefficients

- There are algorithms for determining the number of bits in the variable bitwidth coefficients.
- One algorithm for the "serial" method coeffs. in Figure 3,
- and another algorithm for the "parallel" method coeffs. in Figure 7.
- Those algorithms are a bit too intricate (too grueling) to cover in a Conference presentation such as this.
- Those algorithms will be published in the "DSP Tips \& Tricks" column,
- in the July 2010 issue of the IEEE Signal Processing Magazine.
- If you want to learn those algorithms before July, send me an E-mail,
- at: R.Lyons@ieee.org.
- Please be aware that the Copyrights to the figures in this presentation are, this month, being transferred to the IEEE.
- This entire filter coefficient-enhancement idea is not mine.
- This is the idea of Zhi Shen.
- Ph.D degree student with the Department of Electronics and Information Engineering, Huazhong Univ.Sci. \& Tech., Wuhan, P.R. China.

- As far as I know, Mr. Shen has implemented these improved-precision coefficient methods,
- on an Altera FPGA.

