
Coyright 2010, Iowegian
International Corporation

Introduction to Python

Grant Griffin
Iowegian International Corporation

http://www.iowegian.com

Introduction to Python

Topics

• What is Python?
• Why Python?
• How does it compare to other languages?
• Examples
• How to get started using Python
• Python for C/C++ programmers

Introduction to Python

What is Python?
• Created by Guido van Rossum in 1989
• Free/open scripting language:

– Interpreted
– Dynamically typed

• Both procedural and object-oriented
• Semantically similar to C/C++ and Perl
• Can easily be extended or embedded

– Broad license (not GPL, but GPL compatible)
• General use, but suited to DSP system design:

– Built-in support for complex numbers (!)
– Support for vectors and matrices and numeric functions via

extensions

Introduction to Python

Why Use a Scripting Language?

• Favors efficiency of programming over efficiency
of execution
– Eliminates need to manage memory
– Quick change/rebuild cycle

• Useful for common auxiliary programming tasks:
– File munging
– Data analysis
– Pseudo-shell language
– Test aids
– Easy cross-platform GUI programming

• Conclusion: Every professional programmer
should master a general-use scripting language

Introduction to Python

Why Python?

• Free/open
• Has a clear, clean syntax
• Works as you expect
• “Batteries Included”
• Has lots of extensions and a strong community
• Highly portable
• Scales well
• Mature and stable
• Well documented

Introduction to Python

The (Abbreviated) Zen of Python

Beautiful is better than ugly. (Compare to Perl, Ruby, and TCL)
Explicit is better than implicit. (Compare to Perl)
Simple is better than complex. (Compare to C++)
Complex is better than complicated. (Compare ot C++)
Readability counts. (Compare to Perl)
Special cases aren't special enough to break the rules.
 Although practicality beats purity. (Compare to Matlab)
Errors should never pass silently. (Compare to Matlab)
There should be one-- and preferably only one --obvious way to do

it. (Compare to Perl)
Although that way may not be obvious at first unless you're Dutch.

(Compare to Ruby)
Namespaces are one honking great idea -- let's do more of those!

(Compare to Matlab and C)

Introduction to Python

Python Compared to C/C++

• Compared to C:
– “High-level”: no need for memory management
– Dynamically typed
– Uses a small set of general-use data types
– Uses dynamic binding (references) instead of pointers
– Uses import rather than include

• Compared to C++
– Simplified system of object classes
– Does generic programming via binding rather than

templates
– “Batteries Included”

Introduction to Python

Python Compared to Other
Scripting Languages

• Compared to Perl:
– Semantically similar, but beautiful rather than ugly
– “TSBOAPOOOWTDI” rather than “TMTOWTDI” (ick)

• Compared to TCL
– Much more readable
– Uses TCL’s TkInter system as standard GUI

• Compared to Matlab:
– Free/open
– General use
– Indexing is zero-based rather than “horrible”
– Has strong support for namespaces and object-oriented

programming
– Supports scientific programming via extension modules

Introduction to Python

Python’s Design

• Clean, minimal syntax: “executable pseudo
code”

• Implemented in C and is generally C-like
• Uses indentation to delimit blocks
• Supports both procedural and object-oriented

programming
• Uses a small set of powerful data types: float,

int, list, tuple, dictionary (aka hash)
• Supports generic programming via dynamic

binding rather than templating

Introduction to Python

Is Python a Real Programming
Language?

• What about?
– Lack of variable declarations and type safety
– Execution speed (compilation)
– Standardization
– Use in large systems

• Python isn’t a systems language but it’s
useful for nearly everything else

Introduction to Python

Interactive Example: Variables
ActivePython 2.5.2.2 (ActiveState Software Inc.) based on
Python 2.5.2 (r252:60911, Mar 27 2008, 17:57:18) [MSC v.1310 32

bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more

information.
>>> x = [1, 2, 3] # x is a list
>>> x
[1, 2, 3]

>>> 7*14
98

>>> x=32; # x now is an integer
>>> x=32
>>> print x
32

Introduction to Python

Interactive Example:
 Dictionaries and Exceptions

>>> days_in_month = {'January':31, 'February':28, 'March':31}

>>> days_in_month['March']
31

>>> days_in_month['December']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'December'

>>> try:
... days = days_in_month['December']
... except KeyError:
... print 'Unknown month'
...
Unknown month
>>>

Introduction to Python

Interactive Example: Complex
Numbers

>>> x = 1 + 1j
>>> y = 1 - 1j
>>> x * y
(2+0j)
>>> x + y
(2+0j)
>>> x - y
2j
>>>
>>> type(x)
<type 'complex'>

Introduction to Python

Example: Fibonacci Function
def fibo(n):
 "Returns the first n Fibonacci numbers"
 x = [1, 1]
 while len(x) < n:
 x.append(x[-1] + x[-2])
 return x[:n]

Introduction to Python

Interactive Example:
 An Empty Class

>>> class C:

... pass # do nothing

...

>>> c = C()

>>> c.x = 1

>>> c.y = 2

>>> print 'c.x=%i c.y=%i' % (c.x, c.y)

c.x=1 c.y=2

Introduction to Python

Example: A Simple Class
File simple_class.py:

class Simple:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __str__(self):

 return 'x=%i, y=%i' % (self.x, self.y)

if __name__ == '__main__':

 simple_instance = Simple(2, 3)

 print simple_instance

…

J:\>simple_class.py

x=2, y=3

Introduction to Python

Which Python?

• Python has always been fully backwards
compatible through version 2.x

• Version 3.x deliberately breaks compatibility to
clean up minor things Guido didn’t like

• A tool to automatically convert 2.x code to 3.x is
provided

• Version 2.x is still fully supported.
– Version 2.6.5 is current
– More 2.x versions will be released

• Conclusion: You can learn/use either 2.x or 3.x.

Introduction to Python

Which Distribution?

• The canonical version is at python.org.
• “ActivePython” includes an IDE and a nice

help system
• Python(x, y) at http://www.pythonxy.com is

a bundle of Python 2.6 with lots of
scientific and numeric extensions

• Others: SAGE, IronPython (.NET), Jython,
Cython

Introduction to Python

Getting Started With Python

• Download and install Python
• Go through the tutorial that’s built into the

Python help system
• Read “Learning Python” or “Dive Into Python”

(available free online at
http://diveintopython.org/)

• Start writing Python
• Learn Regular Expressions
• Read the Python newsgroup, comp.lang.python

Introduction to Python

Python for C Programmers

• Use indentation for blocks instead of {}
• Use “#” for end-of-line comments. (No block

comments)
• Semi-colons are optional
• Variables:

– Declare variables implicitly via assignment:
� x = 3 # x is an integer
� x = ‘string’ # x is a string
� x = [] # x is a list

– Don’t use “const”, “static”, etc.
– Don’t use pointers (not needed with dynamic binding)
– Can change a variable’s type on-the-fly, as above

Introduction to Python

More Python for C Programmers

• Use “import” rather than “#include”
• Use “def” to define a function
• Use “%” operator to format strings ala sprintf
• Use strings instead of characters
• Use += and -= instead of ++ and --
• “for” iterates over a sequence, e.g. “for x in y”

– use “while” to do C-style for and do/while loops

Introduction to Python

Python for C++ Programmers

• Use “__init__” for (optional) constructors
• Use explicit “self” rather than implicit “this”
• Constructors of base classes aren’t called

automatically: call them yourself if you want to
• Don’t worry about privacy:

– "If you have something that you don't want anyone to
know, maybe you shouldn't be doing it in the first
place." Eric Schmidt, CEO of Google

• All class functions are virtual
• Override operators via special function names,

e.g. use “__gt__” rather than “operator>“

Introduction to Python

Summary

• What is Python?
– A free/open, general-use object-oriented scripting

language
• Why Python?

– It’s the Swiss Army Knife of programming languages
• How does it compare to other languages?

– As good as or better in almost every way, though not
a systems language

• How can you get started using it?
– Go through the tutorial, read a book or two, practice

Introduction to Python

Final Thought

A day without Python
 is like a day without sunshine

